合作客戶(hù)/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 側(cè)鏈烷基的飽和度對(duì)腰果酚磺酸鹽水溶液的表面活性、界面活性的影響
> BOPP薄膜制備,印刷表層的表面張力多少合適
> 瘦子=表面張力?。颗肿樱奖砻鎻埩Υ??
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對(duì)比(一)
> 電子變壓器油的界面張力
> 電場(chǎng)強(qiáng)度大小對(duì)表面張力、液滴鋪展變形運(yùn)動(dòng)的影響
> 微納米顆粒三相泡沫體系的溶液特性、界面性能和驅(qū)油效果(二)
> 基于單分子層技術(shù)研究哈維氏弧菌磷脂酶D對(duì)不同磷脂底物的吸附動(dòng)力學(xué)——材料與方法
> 基于天然植物油的酰胺胺氧化合物的合成表征及表面性質(zhì)——結(jié)論、致謝!
> 棕櫚酸二甘醇酰胺無(wú)堿條件下降低大慶原油/地層水界面張力——結(jié)果和討論、結(jié)論
推薦新聞Info
-
> ?我第一次操作表面張力儀的心得體會(huì)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類(lèi)型、表/界面張力影響(四)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類(lèi)型、表/界面張力影響(三)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類(lèi)型、表/界面張力影響(二)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類(lèi)型、表/界面張力影響(一)
> 基于藥液表面張力測(cè)定估算蘋(píng)果樹(shù)最大施藥液量的方法(四)
> 基于藥液表面張力測(cè)定估算蘋(píng)果樹(shù)最大施藥液量的方法(三)
> 基于藥液表面張力測(cè)定估算蘋(píng)果樹(shù)最大施藥液量的方法(二)
> 基于藥液表面張力測(cè)定估算蘋(píng)果樹(shù)最大施藥液量的方法(一)
> 礦用塵克(C&C)系列除塵劑對(duì)大采高工作面截割煤塵的降塵效率影響(三)
槐糖脂的屬性:脂肪酸底物和混合比例的影響——結(jié)論、致謝!
來(lái)源:上海謂載 瀏覽 1534 次 發(fā)布時(shí)間:2021-11-17
4個(gè)親代SLs中的每一個(gè)都產(chǎn)生了35–36 mN/m的可比最小ST,但CMC值明顯不同(表3)。 SL-p和SL-l的CMC值均大于200 mg/l,而SL-s和SL-o的CMC值分別為35 mg/l和140 mg/l。 IFT值范圍為3 mN/m(SL-p)至7 mN/m(SL-l)。 為了控制SLs的表面活性,以50:50的混合比制備混合物,并重新評(píng)估其性能。 各混合物的內(nèi)酯分布見(jiàn)表2。 經(jīng)分析,最小ST和IFT相對(duì)不變,但CMC值確實(shí)因SL混合物而異。 通過(guò)混合獲得了介于48 mg/l和140 mg/l之間的臨界膠束濃度。 有趣的是,CMC值最低的SL混合物都含有SL-s成分。 特別是SL-s的CMC值為35 mg/l; 即使是以25:25:25:25的比例包含所有4種親本SL的混合物,其CMC值(70 mg/l)也比不含SL-s成分的其他混合物低。 這些數(shù)據(jù)表明,SL-s對(duì)水的表面活性性能的影響更為顯著。 通過(guò)使用較少的SL-s,可以實(shí)現(xiàn)相等的最小ST和IFT。 性能控制和高產(chǎn)量將通過(guò)降低成本最終有助于SLs的工業(yè)應(yīng)用。 這些數(shù)據(jù)還指出,通過(guò)將不同的SLs混合在一起以獲得所需的性質(zhì),可以在一定程度上控制SLs的表面活性性質(zhì)。 雖然未達(dá)到表明這些SLs單獨(dú)具有優(yōu)越表面活性劑性能的最低標(biāo)準(zhǔn),但其性能可能足以允許其作為石化表面活性劑添加劑的使用量增加,以便在大量使用表面活性劑的應(yīng)用中盡量減少不利的環(huán)境影響。 SL-p和SL-l的CMC值均大于200 mg/l,而SL-s和SL-o的CMC值分別為35 mg/l和140 mg/l。IFT值范圍為3 mN/m(SL-p)至7 mN/m(SL-l)。為了控制SLs的表面活性,以50:50的混合比制備混合物,并重新評(píng)估其性能。各混合物的內(nèi)酯分布見(jiàn)表2。經(jīng)分析,最小ST和IFT相對(duì)不變,但CMC值確實(shí)因SL混合物而異。通過(guò)混合獲得了介于48 mg/l和140 mg/l之間的臨界膠束濃度。有趣的是,CMC值最低的SL混合物都含有SL-s成分。特別是SL-s的CMC值為35 mg/l;通過(guò)將SL-s與SL-p、SL-o和SL-l以50:50的比例混合,CMC值分別增加到63 mg/l、50 mg/l和48 mg/l。即使是以25:25:25:25的比例包含所有4種親本SL的混合物,其CMC值(70 mg/l)也比不含SL-s成分的其他混合物低。這些數(shù)據(jù)表明,SL-s對(duì)水的表面活性性能的影響更為顯著。通過(guò)使用較少的SL-s,可以實(shí)現(xiàn)相等的最小ST和IFT。性能控制和高產(chǎn)量將通過(guò)降低成本最終有助于SLs的工業(yè)應(yīng)用。這些數(shù)據(jù)還指出,通過(guò)將不同的SLs混合在一起以獲得所需的性質(zhì),可以在一定程度上控制SLs的表面活性性質(zhì)。雖然未達(dá)到表明這些SLs單獨(dú)具有優(yōu)越表面活性劑性能的最低標(biāo)準(zhǔn),但其性能可能足以允許其作為石化表面活性劑添加劑的使用量增加,以便在大量使用表面活性劑的應(yīng)用中盡量減少不利的環(huán)境影響。
表3.由棉鈴蟲(chóng)從棕櫚酸(SL-p)、硬脂酸(SL-s)、油酸(SL-o)、亞油酸(SL-l)及其混合物中生產(chǎn)的槐脂的物理性質(zhì)a

致謝
作者感謝Marshall Reed在整個(gè)研究過(guò)程中提供的技術(shù)援助。
參考
Abe Y, Inoue S, Ishida A (1981) Cosmetic composition for skin and hair treatment. US Patent #4,297,340, 27 Oct 1981
Ashby RD, Nun?ez A, Solaiman DKY et al (2005) Sophorolipid biosynthesis from a biodiesel co-product stream. J Am Oil Chem Soc 82:625–630
Daniel H-J, Reuss M, Syldatk C (1998) Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol Lett 20:1153–1156
Gorin PA, Spencer JFT, Tulloch AP (1961) Hydroxy fatty acid and glycolipids of sophorose from Torulopsis magnoliae. Can J Chem 39:846–895
Hall PJ, Haverkamp J, van Kralingen CJ, Schmidt M (1995) Synergistic dual surfactant detergent composition containing sophoroselipid. US Patent #5,417,879, 23 May 1995
Hommel RK, Huse K (1993) Regulation of sophorose lipid production by Candida apicola. Biotechnol Lett 33: 853–858
Inoue S, Kimura Y, Kinta M (1980) Process for producing a glycolipid ester. US Patent #4,215,213, 29 July 1980 Ito S, Inoue S (1982) Sophorolipids from Torulopsis bombicola: Possible relation to alkane uptake. Appl Environ Microbiol 43:1278–1283
Mager H, Ro¨thlisberger R, Wagner F (1987) Cosmetic composition containing one sophorose lipid-lactone and its use. European Patent EP 0209783, 28 Jan 1987
Maingault M (1999) Utilization of sophorolipids as therapeutically active substances or cosmetic products, in particular for the treatment of the skin. US Patent 5,981,497, 9 Nov 1999
Nun?ez A, Ashby R, Foglia TA et al (2001) Analysis and characterization of sophorolipids by liquid chromatography with atmospheric pressure chemical ionization. Chromatographia 53:673–677
Nun?ez A, Ashby R, Foglia TA et al (2004) LC/MS analysis and lipase modification of the sophorolipids produced by Rhodotorula bogoriensis. Biotechnol Lett 26:1087–1093 Solaiman DKY, Ashby RD, Foglia TA et al (2004) Sophorolipids—emerging microbial biosurfactants. Inform 15: 270–272