合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 濕潤(rùn)劑的表面張力大小對(duì)硫化礦塵濕潤(rùn)效果和濕潤(rùn)行為的影響
> 什么叫熔體,表面張力對(duì)陶瓷熔體的作用機(jī)理
> 10種常用表面活性劑水溶液的表面張力測(cè)定、泡沫的產(chǎn)生和測(cè)試(一)
> 酚胺樹(shù)脂聚醚型破乳劑分子結(jié)構(gòu)、濃度對(duì)油-水界面張力的影響——結(jié)果與討論、結(jié)論
> 一種新表面張力改性方法讓全固態(tài)電池性能更優(yōu)
> 氧化石墨烯納米流體的凝固特性及在聲懸浮下表面張力研究
> 接觸角遲滯時(shí)氣~液界面張力的溫度敏感性對(duì)液滴蒸發(fā)過(guò)程的影響——結(jié)果分析、結(jié)論
> 表面張力估算法測(cè)定29種常見(jiàn)低芳淺色礦物油的溶解度參數(shù)——結(jié)果與討論、結(jié)論
> 新型十六烷基胺無(wú)堿表面活性劑的合成、界面性能及復(fù)配性能(二)
> 便攜式表面張力儀和氣泡壓力法表面張力計(jì)介紹
推薦新聞Info
-
> ?我第一次操作表面張力儀的心得體會(huì)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(四)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(三)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(二)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(一)
> 基于藥液表面張力測(cè)定估算蘋果樹(shù)最大施藥液量的方法(四)
> 基于藥液表面張力測(cè)定估算蘋果樹(shù)最大施藥液量的方法(三)
> 基于藥液表面張力測(cè)定估算蘋果樹(shù)最大施藥液量的方法(二)
> 基于藥液表面張力測(cè)定估算蘋果樹(shù)最大施藥液量的方法(一)
> 礦用塵克(C&C)系列除塵劑對(duì)大采高工作面截割煤塵的降塵效率影響(三)
考慮界面張力、液滴尺寸和液滴變形影響的攜液臨界模型構(gòu)建(一)
來(lái)源:石油鉆采工藝 瀏覽 576 次 發(fā)布時(shí)間:2024-12-17
現(xiàn)有的攜液臨界流量模型通常認(rèn)為界面張力及曳力系數(shù)為常數(shù),忽略溫度及壓力對(duì)界面張力、液滴尺寸及液滴變形對(duì)曳力系數(shù)的影響,造成預(yù)測(cè)攜液臨界流量的結(jié)果與實(shí)際結(jié)果有較大差異。為了更準(zhǔn)確預(yù)測(cè)氣井?dāng)y液臨界流量,首先通過(guò)分段擬合界面張力實(shí)驗(yàn)數(shù)據(jù),建立界面張力公式,然后引入變形液滴曳力系數(shù)公式及液滴變形程度和液滴尺寸之間的關(guān)系式,得到考慮界面張力和液滴變形影響的攜液臨界流量模型。研究結(jié)果表明,溫度越高,壓力越大,界面張力越小,攜液臨界流量越??;液滴尺寸越大,液滴變形越嚴(yán)重,液滴高寬比越小,曳力系數(shù)越大,攜液臨界流量越小。實(shí)驗(yàn)表明,模型預(yù)測(cè)數(shù)據(jù)與氣井微觀液滴積液實(shí)驗(yàn)數(shù)據(jù)基本吻合一致,其準(zhǔn)確度遠(yuǎn)遠(yuǎn)高于Turner模型和李閩模型。新模型能夠更加準(zhǔn)確預(yù)測(cè)不同液滴尺寸下的攜液臨界流量,符合氣田開(kāi)發(fā)規(guī)律,為油氣田開(kāi)發(fā)提供技術(shù)指導(dǎo)。
氣井?dāng)y液臨界流量的準(zhǔn)確計(jì)算對(duì)于采氣和開(kāi)發(fā)工程方案的編制有重要意義。1969年Turner分析了垂直管流中液相的流動(dòng)方式,認(rèn)為液滴模型可以較準(zhǔn)確預(yù)測(cè)積液的形成,其模型中液滴呈球形,曳力系數(shù)取0.44,界面張力為60 mN/m,模型適用條件為氣液比大于1 367 m3/m3,流態(tài)屬于霧狀流。之后許多學(xué)者分別在模型調(diào)整系數(shù)、液相流動(dòng)方式、液滴形狀等方面作了改進(jìn),但是仍然有些因素沒(méi)有被考慮到。例如,氣水界面張力通常被認(rèn)為是常數(shù)60 mN/m,而實(shí)驗(yàn)表明其數(shù)值隨壓力與溫度的變化而變化;液滴變形高寬比固定,導(dǎo)致對(duì)應(yīng)曳力系數(shù)為常數(shù),而實(shí)驗(yàn)表明其受到氣體速度和壓力的影響。在前學(xué)者研究的基礎(chǔ)上,考慮界面張力、液滴尺寸和變形影響,建立新的攜液臨界流量模型,以更加準(zhǔn)確地預(yù)測(cè)氣井?dāng)y液臨界流量。
1、界面張力模型
Firoozabadi于1988年首次根據(jù)實(shí)驗(yàn)測(cè)量的甲烷(CH4)、丙烷(C3H8)、正丁烷(n-C4)、正戊烷(n-C5)、正己烷(n-C6)、苯(C6H6)、正辛烷(n-C8)和正十二烷(n-C12)的數(shù)據(jù),認(rèn)為烴與水之間的界面張力、擬對(duì)比溫度和烴水密度差滿足一定關(guān)系,以烴水密度差Δρwh為橫坐標(biāo),函數(shù)(σhw0.25/Δρwh)Tr0.3125為縱坐標(biāo),可以得到不同組分的烴/水界面張力函數(shù)曲線,如圖1所示。Danesh于1988年利用Firoozabadi提供的實(shí)驗(yàn)數(shù)據(jù),回歸出了界面張力經(jīng)驗(yàn)公式為
圖1不同組分的烴/水界面張力函數(shù)
式中,Δρwh為烴水密度差,g/cm3;σhw為烴水、氣水或者油水界面張力,mN/m;ρw為水的密度,g/cm3;ρh為烴的密度或者氣和油的密度,g/cm3;Tr為擬對(duì)比溫度。
Sutton于2007年在新實(shí)驗(yàn)數(shù)據(jù)的支持下,對(duì)Danesh模型進(jìn)行改進(jìn),得到新的模型為
Sutton通過(guò)數(shù)據(jù)分析改進(jìn)舊模型,假設(shè)臨界溫度為常數(shù),建立了新的界面張力模型為
式中,T為熱力學(xué)溫度,°R。上述3個(gè)模型的密度差范圍為0~1 g/cm3,包含油相和氣相2個(gè)區(qū)域,模型對(duì)油水和氣水界面張力的預(yù)測(cè)均通用,但是由于同時(shí)擬合了油水和氣水界面張力實(shí)驗(yàn)數(shù)據(jù),模型整體擬合的精度降低,為了獲得更精確的氣水界面張力,通過(guò)分段擬合,即只擬合密度差大于0.4 g/cm3的氣相階段,得到更加準(zhǔn)確的氣水界面張力經(jīng)驗(yàn)公式為
式中,σgw為氣水界面張力,mN/m;ρg為氣相密度,g/cm3。比較新模型式(4)與Danesh模型、Sutton模型在密度差大于0.4 g/cm3時(shí)的誤差,如圖2所示。Danesh模型平均絕對(duì)誤差為7.7%;Sutton模型平均絕對(duì)誤差為12.1%,而新模型平均絕對(duì)誤差為2.8%,計(jì)算精度更高。
圖2絕對(duì)誤差直方圖
如圖3所示為利用新模型繪制的不同溫度和壓力下的界面張力曲線。從圖中可知,壓力越大,溫度越高,氣水界面張力越小;氣體相對(duì)密度越大,氣水界面張力越小。當(dāng)壓力和溫度分別為0~40 MPa和20~200℃時(shí),界面張力范圍為30~75 mN/m,不能看成常數(shù)。
圖3界面張力曲線
2、液滴變形特征
液滴在氣相中運(yùn)動(dòng)時(shí),氣體作用于液滴上的曳力為
式中,F(xiàn)d為氣體對(duì)液滴的曳力,mN/m;Cd為曳力系數(shù),與液滴大小、液滴形狀及雷諾數(shù)有關(guān);Ad為液滴迎風(fēng)面積,即液滴在流動(dòng)方向上的投影,m;vg為氣相速度,m/s。實(shí)驗(yàn)觀察液滴下降過(guò)程中通常大液滴首先呈球形、橢球形或者半漢堡形狀,下降過(guò)程中逐漸破碎變小,變?yōu)榍蛐?。魏納于2007年在高速照相機(jī)下捕捉高速空氣中液滴的形狀,表明液滴在高速氣流中的形狀是橢球形,且液滴并不保持一個(gè)固定形狀,而是在上升過(guò)程中不斷變化,液滴越往上越趨近保持球形。