合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 肺內(nèi)液表面張力的作用、臨床意義及測量方法(二)
> 3種反應(yīng)型陽離子Gemini表面活性劑合成、表征和性能測試(上)
> 新制備的緩沖氧化物蝕刻液兼具高潤濕性和較小的表面張力
> 人胰島素的朗繆爾單分子層膜的表面化學(xué)和光譜學(xué)性質(zhì)——實驗部分
> 基于超微量天平對沉積質(zhì)量的精確測量,制備納尺度的銅薄膜
> β-乳球蛋白質(zhì)納米纖維制備及界面吸附和界面流變行為分析——摘要、材料與方法
> 座滴法測量玻璃熔體表面張力裝置、步驟
> 避免液滴表面張力影響吸附,研發(fā)可提升水霧降塵效果的公路施工用降塵設(shè)備
> 不同水油黏度比條件下乳化對3種稠油復(fù)合體系的影響(二)
> 中心對稱分子稀土夾心雙酞菁銩LB膜制備及二次諧波產(chǎn)生機制
推薦新聞Info
-
> ?我第一次操作表面張力儀的心得體會
> pH對馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(四)
> pH對馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(三)
> pH對馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(二)
> pH對馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(一)
> 基于藥液表面張力測定估算蘋果樹最大施藥液量的方法(四)
> 基于藥液表面張力測定估算蘋果樹最大施藥液量的方法(三)
> 基于藥液表面張力測定估算蘋果樹最大施藥液量的方法(二)
> 基于藥液表面張力測定估算蘋果樹最大施藥液量的方法(一)
> 礦用塵克(C&C)系列除塵劑對大采高工作面截割煤塵的降塵效率影響(三)
拉脫法測量:不同性能磁性液體的磁表面張力變化規(guī)律與影響因素(一)
來源:物理實驗 瀏覽 715 次 發(fā)布時間:2024-10-16
使用拉脫法測量了磁性液體的磁表面張力,根據(jù)計算機實時采集電壓隨時間的變化數(shù)據(jù)得到U-t曲線,進而將液膜拉脫過程分為6個階段,分別研究了每個階段的電壓變化原因。無外加磁場作用時2F號磁性液體存在一電壓變化較平緩的階段,而白油和1F磁性液體并未出現(xiàn)此現(xiàn)象,這主要是因為白油和1F磁性液體表面張力較大,2F號磁性液體的表面張力較小造成。有外加磁場作用時,磁性液體的磁表面張力增加,主要是由于外加磁場增強了磁性顆粒之間的相互作用。
1、前言
磁性液體是由包覆表活性劑的磁性顆粒分散在載液中,依靠表面活性劑分子層的排斥作用而穩(wěn)定存在,特殊結(jié)構(gòu)決定了磁性液體表面張力的特殊性,外加磁場作用于磁性液體時,分散在載液中的磁性顆粒濃度和磁場強度會導(dǎo)致磁性液體的磁表面張力發(fā)生變化,從而影響磁性液體在界面不穩(wěn)定性、液滴形變、密封等方面的應(yīng)用。Sudo等人的研究表明:水基和煤油基磁性液體的磁表面張力隨磁場強度增強而變大;隨濃度增加,水基磁性液體的磁表面張力變小,而煤油基磁性液體的表面張力變大。大學(xué)物理實驗課程中設(shè)置了“拉脫法測量液體的表面張力系數(shù)”,一般都是測量水及其溶液的表面張力,以教師講授為主,且內(nèi)容簡單,引不起學(xué)生的學(xué)習(xí)興趣,艾志偉等人提出將PBL教學(xué)模式應(yīng)用到拉脫法測量液體的表面張力系數(shù),以問題為導(dǎo)向,可促進學(xué)生的主動學(xué)習(xí)和合作學(xué)習(xí)。
因此,本文將特殊的磁性液體融入實驗教學(xué),使用拉脫法測量其磁表面張力,新鮮知識的融入可激發(fā)學(xué)生的學(xué)習(xí)主動性;將硅壓力敏傳感器的力信號轉(zhuǎn)變?yōu)殡妷盒盘栞斎胗嬎銠C,利用計算機在線實時監(jiān)測電壓值的變化,研究拉脫過程中不同性能磁性液體的磁表面張力變化規(guī)律,讓學(xué)生了解磁表面張力的影響因素。根據(jù)計算機實時在線采集的電壓隨時間的變化曲線將液膜拉脫過程分為6個階段,分別對每個階段研究了電壓變化的原因。測量了豎直方向上均勻磁場中不同性能的磁性液體的磁表面張力,分析了磁場強度對其的影響。
2、實驗裝置及原理
拉脫法是測試液體表面張力最常用的方法,該方法靈敏度高、儀器簡單,因此使用拉脫法測量了磁性液體的磁表面張力,測試裝置如圖1所示。將培養(yǎng)皿放入空心螺線管的中心位置,倒入大約1.0cm高磁性液體,保證拉脫過程中磁性液體和片狀吊環(huán)處于均勻磁場中,所施加的磁場方向豎直向上,該磁場方向平行于切線方向的磁性液膜,研究均勻磁場強度對磁性液體磁表面張力的影響。
如圖2所示。液膜破裂前后瞬間,片狀吊環(huán)的受力平衡方程分別為
根據(jù)表面張力的定義式可得:
力敏傳感器所受拉力可表示為
聯(lián)立(1)——(5)式可得:
式中,F(xiàn)1和F2分別為液膜破裂前后瞬間片狀吊環(huán)所受的拉力,f1和f2為片狀吊環(huán)內(nèi)外表面液體的表面張力,θ為表面張力與豎直方向的夾角。m為片狀吊環(huán)的質(zhì)量,D1和D2為片狀吊環(huán)內(nèi)外徑,B為力敏傳感器靈敏度,U1和U2為液膜破裂前后瞬間力敏傳感器輸出的電壓值,σ為磁性液體的磁表面張力系數(shù)。
圖1磁性液體磁表面張力測試儀
圖2片狀吊環(huán)某過程受力分析
3、無外加磁場和有磁場作用時磁性液體的表面張力
實驗使用的磁性液體采用等離子體法研制,將7#白油和PBSI-941表面活性劑按比例配制,常壓下加溫進行超聲波分散,使二者充分混合,倒入反應(yīng)腔;通Ar置換反應(yīng)腔內(nèi)空氣,使用交變高頻脈沖電壓對NH3和Ar放電產(chǎn)生氮的活性粒子,和Fe(CO)5分解生成的鐵粒子重新組合,控制好反應(yīng)溫度和時間,合成氮化鐵磁性液體。納米磁性顆粒的直徑范圍為9——15nm.1F號和2F號磁性液體制備時7#白油和PBSI-941表面活性劑的質(zhì)量比分別為4.5:1和5:1,除7#白油用量不同外,其他制備參量相同。
表1力敏傳感器定標(biāo)數(shù)據(jù)
圖3 7#白油和磁性液體液膜的收縮狀態(tài)
力敏傳感器定標(biāo)數(shù)據(jù)見表1,使用Origin軟件對直線進行擬合,可得力敏傳感器靈敏度B=7.727V/N.測量無外加磁場作用的磁性液體表面張力系數(shù)時,為直觀觀察拉脫時液膜的變化過程,將培養(yǎng)皿放置于電磁線圈端部進行測量,圖3為拉脫過程中某一瞬間液膜的收縮狀態(tài),從圖中可看到,磁性液體的液膜拉得更長,液膜收縮的趨勢比白油更明顯,這主要是因為磁性液體中加入的表面活性劑降低了其表面張力??蓮谋砻鎻埩π纬稍韥矸治銎渲械脑颍旱谝?,液體表面張力系數(shù)的大小宏觀上反映出液體表面具有自動收縮的趨勢,表面張力系數(shù)較大的白油由于分子和分子之間的引力較大,表面層分子更容易向液體內(nèi)部運動,某一拉力作用下,液膜斷裂,不易拉起較長的液膜;第二,不同液體對同一種固體的浸潤程度不一樣,表面張力系數(shù)小的液體(0.03N/m左右),幾乎能浸潤一切固體;表面張力系數(shù)較大的液體,只能浸潤某些固體;7#白油的表面張力系數(shù)大于磁性液體,片狀吊環(huán)和磁性液體的結(jié)合力大于片狀吊環(huán)和7#白油的結(jié)合力;液膜不容易和片狀吊環(huán)脫離,拉起來的液膜比較長。