合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 氣溶膠固定劑PAM-b-PVTES合成路線及GPC、DSC、表面張力等性能測(cè)試(四)
> St與MMA在無(wú)皂乳液聚合過(guò)程中的動(dòng)態(tài)表面張力變化——摘要、實(shí)驗(yàn)部分
> ?涂料施工后出現(xiàn)縮孔等缺陷,居然與表面張力有關(guān)
> 肺內(nèi)液表面張力的作用、臨床意義及測(cè)量方法(二)
> 電極與溶液界面的吸附現(xiàn)象
> 不同溫度下水波波速和表面張力系數(shù)的關(guān)系與計(jì)算方法【實(shí)驗(yàn)】(一)
> LB膜技術(shù)制備納米薄膜保護(hù)鋰電池極片的方法【發(fā)明方案】
> Delta-8食用餐食后人體內(nèi)十二指腸液的組成及性質(zhì)——結(jié)果和討論、結(jié)論、致謝!
> 高溫高壓潤(rùn)濕性及界面張力儀功能、使用范圍及應(yīng)用
> 表面張力儀測(cè)試預(yù)熱具體方法
推薦新聞Info
-
> ?我第一次操作表面張力儀的心得體會(huì)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類(lèi)型、表/界面張力影響(四)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類(lèi)型、表/界面張力影響(三)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類(lèi)型、表/界面張力影響(二)
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類(lèi)型、表/界面張力影響(一)
> 基于藥液表面張力測(cè)定估算蘋(píng)果樹(shù)最大施藥液量的方法(四)
> 基于藥液表面張力測(cè)定估算蘋(píng)果樹(shù)最大施藥液量的方法(三)
> 基于藥液表面張力測(cè)定估算蘋(píng)果樹(shù)最大施藥液量的方法(二)
> 基于藥液表面張力測(cè)定估算蘋(píng)果樹(shù)最大施藥液量的方法(一)
> 礦用塵克(C&C)系列除塵劑對(duì)大采高工作面截割煤塵的降塵效率影響(三)
濃度、溫度、二價(jià)離子、礦化度等對(duì)無(wú)堿二元復(fù)合體系界面張力的影響
來(lái)源:當(dāng)代化工 瀏覽 778 次 發(fā)布時(shí)間:2024-07-12
無(wú)堿二元復(fù)合體系由于其兼具了聚合物和表面活性劑兩者的特性,依據(jù)毛管數(shù)理論該體系不但可以提高驅(qū)替相粘度還可以降低油水間的界面張力,兩者均可以提高毛管力增加原油采收率。其中,要想使毛管數(shù)值在水驅(qū)基礎(chǔ)上再增高102~104個(gè)數(shù)量級(jí),復(fù)合體系的界面張力值就應(yīng)降低到10-3數(shù)量級(jí),既超低界面張力。由于復(fù)合體系中各組分用量及油藏條件對(duì)二元體系界面張力影響較大,本文評(píng)價(jià)了這些應(yīng)先因素對(duì)二元復(fù)合體系的影響程度,對(duì)油田開(kāi)展無(wú)堿二元復(fù)合驅(qū)具有一定的指導(dǎo)意義。
1界面張力的測(cè)定條件及方法
1.1無(wú)堿二元復(fù)合體系的配制條件
實(shí)驗(yàn)用聚合物為聚丙烯酰胺,其相對(duì)分子質(zhì)量為1 400×104,固含量均為90%;實(shí)驗(yàn)用活性劑:自主合成的活性劑YHS系列,該活性劑呈淺黃色膏狀、具有芳基烷基結(jié)構(gòu),有效含量30%,分子量較大,克拉夫特溫度約為50℃;配制無(wú)堿二元復(fù)合體系用水:某油田回注污水,礦化度6 000 mg/L,其中Ca2+67.8 mg/L,Mg2+40.2 mg/L;實(shí)驗(yàn)溫度:除溫度對(duì)界面影響外其余實(shí)驗(yàn)方案溫度均為45℃。
1.2實(shí)驗(yàn)儀器
由芬蘭Kibron 公司生產(chǎn)的EZ-Pi Plus便攜式動(dòng)態(tài)表面張力儀測(cè)定油水界面張力。
1.3界面張力測(cè)定方法及原理
通過(guò)界面張力測(cè)定,得到不同界面張力特征的二元復(fù)合驅(qū)油體系。
2無(wú)堿二元復(fù)合體系界面張力影響因素評(píng)價(jià)
2.1表面活性劑對(duì)界面張力的影響
將無(wú)堿二元復(fù)合體系的界面張力隨不同YHS濃度的變化規(guī)律繪制如圖1所示。依據(jù)圖中曲線規(guī)律可以得出,在無(wú)堿的情況下YHS二元復(fù)合體系即使在較低的活性劑用量情況下(0.005%)就可以達(dá)到超低界面張力(10-3mN/m數(shù)量級(jí)及以下)。隨著活性劑濃度的增加,界面張力變化不大,依舊可以維持在10-3mN/m數(shù)量級(jí)及以下,說(shuō)明該活性劑組成的二元復(fù)合體系生超低界面張力的濃度范圍較寬。
但是,改表面活性劑與原油間的油水界面張力,依舊表現(xiàn)出了隨著活性劑濃度增加界面張力降低的特性。這還是由于活性劑分子在低濃度下呈單分子狀態(tài)分布,使得其定向的排列在油水界面上,導(dǎo)致油水界面張力值較高。但是改活性劑的有點(diǎn)在于在較低的活性劑濃度下,界面張力依舊保持在10-3mN/m數(shù)量級(jí)及以下。
2.2聚合物對(duì)界面張力的影響
將無(wú)堿二元復(fù)合體系的界面張力隨聚合物濃度的變化規(guī)律繪制如圖2所示。
實(shí)驗(yàn)規(guī)律表明聚合物濃度對(duì)界面張力的影響較大,隨著聚合物濃度的增加界面張力升高。由于活性劑分子是小分子基團(tuán),聚丙烯酰胺的加入,其特有的大分子基團(tuán)將會(huì)與活性劑小分子基團(tuán)爭(zhēng)奪界面位置,甚至對(duì)活性劑分子形成聚集體;聚丙烯酰胺的加入也會(huì)增加復(fù)合體系粘度增加了分子間擴(kuò)散的阻力,這些都導(dǎo)致了油水界面上活性劑分子的吸附量,大大影響了二元復(fù)合體系的界面張力[8-10]。
2.3礦化度、二價(jià)離子對(duì)界面張力的影響
因?yàn)榕渲脽o(wú)堿二元復(fù)合體系的污水總還有礦物質(zhì)及金屬陽(yáng)離子,這些離子對(duì)體系的界面張力影響較大。先將無(wú)堿二元復(fù)合體系的界面張力隨礦化度濃度的變化規(guī)律繪制如圖3所示,將無(wú)堿二元復(fù)合體系的界面張力隨二價(jià)離子濃度的變化規(guī)律繪制如圖4所示。實(shí)驗(yàn)結(jié)果表明:YHS表面活性劑配置的二元復(fù)合體系體系隨著礦化度及二價(jià)離子濃度的影響比較小,YHS表面活性劑表現(xiàn)出較好的抗鹽特性。當(dāng)配置溶液水礦化度達(dá)到125 000 mg/L,其中水中二價(jià)離子濃度為1 500 mg/L時(shí),二元復(fù)合體系體系與原油間的界面張力仍維持在10-3 mN/m數(shù)量級(jí)及以下。
但界面張力隨著礦化度及二價(jià)離子濃度的增加依舊發(fā)生小范圍的波動(dòng),這種影響的主演要原因是由于水中陽(yáng)離子增大了表面活性劑分子向油水界面擴(kuò)散的速率并且陽(yáng)離子可以進(jìn)入雙電層使界面層中活性劑分子排列更緊密。另一方面,金屬陽(yáng)離子對(duì)二元體系聚合物分子發(fā)生蜷曲,間接影響二元體系界面張力。
2.4溫度對(duì)界面張力的影響
油藏溫度是影響二元復(fù)合體系性能的一個(gè)重要因素,為了評(píng)價(jià)該二元復(fù)合體系的應(yīng)用條件,將0.01%、0.1%、0.3%三個(gè)活性劑濃度條件下的二元復(fù)合體系界面張力隨溫度的變化規(guī)律繪制如圖5。實(shí)驗(yàn)規(guī)律表明:在溫度從45℃升到80℃這一區(qū)間,YHS表面活性劑與聚合物組成的二元復(fù)合體系均能保持在超低界面張力,表明該二元復(fù)合體系具有一定的耐溫性。
該無(wú)堿二元復(fù)合體系盡管在45℃到80℃下與原油間的界面張力達(dá)到了10-3 mN/m數(shù)量級(jí)及以下。同時(shí)在45℃下,該表面活性劑水溶性較差,這主要是因?yàn)榛钚詣┠z團(tuán)和單個(gè)活性劑分子的混合狀態(tài)存在。所以即使較低溫度下界面張力值較低,但該種活性劑更適合于高溫油田。
3結(jié)論
二元復(fù)合體系在很低的活性劑濃度(0.005%)就可與原油間的界面張力達(dá)到超低。但聚合物濃度對(duì)二元體系與原油間的界面張力影響較大。而配制二元體系用水中礦化度、二價(jià)離子對(duì)復(fù)合體系界面張力影響不大。該活性劑能夠適合于較高礦化度或者二價(jià)離子濃度含量較高的油層。溫度對(duì)二元復(fù)合體系的界面張力基本無(wú)影響,在45~80℃范圍區(qū)間內(nèi)均可以達(dá)到超低,考慮到活性劑的溶解性,該二元復(fù)合體系更適用于高溫油田。